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Instanton calculations using dimensional regularisation 

A J McKane and D J Wallace 
Department of Physics, The University, Southampton SO9 5NH, U K  

Received 19 May 1978 

Abstract. Dimensional regularisation is used to calculate the determinant of small oscil- 
lations about instanton solutions in ~ ( 4 ~ ) ~  field theories with g < 0. Principal featuresof the 
method are: (i) the known instanton solution of four dimensions may be used even though it 
is not a solution of the regularised theory; (ii) the minimally subtracted renormalised 
coupling can be introduced directly. Results are also given for O(n)  internal symmetry and 
conformal invariant q5ZN theories (g < 0). The high-order estimates obtained agree with 
those of Lipatov and Brezin e! al. 

1. Introduction 

Tunnelling phenomena in quantum mechanics are readily calculated in the semiclassi- 
cal limit (small h )  by the WKB approximation. Although the existence of tunnelling in 
quantum field theory was recognised by Dyson (1952), progress in calculation was 
limited by the difficulty of generalising the WKB method from quantum mechanics to 
quantum field theory. 

The formalism for the Green functions of the quantum field as functional integrals of 
exp(iS(d)/h), where S is the classical action of the field 4: indicates the problem. In the 
classically allowed regions where no tunnelling is taking place, the functional integrals 
are dominated by field configurations which are solutions of the classical field equations. 
The field 4 can then be expanded about the classical solution &. If we write 4 = & +  f ,  
then 

J 

no terms linear in c$ appear because c $ ~  is an extremum of S. The terms O ( f 3 )  give 
correction of order A ,  so that for small h the Gaussian integral on the field f yields (for 
bosons) 

J D 4  exp(iS(4)) = constant exp(iS(4,)/h)(det M)-”*(l+ O(h)). (1) 

In Feynman graph language, the factor involving the determinant of A4 comes from 
one-loop diagrams; the corrections of order h correspond to two or  more loops. We 
need to generalise this semiclassical treatment to the classically forbidden tunnelling 
region where no classical solutions exist. 

The resolution of this problem which has emerged (McLaughlin 1972) is that the 
dominant field configurations for tunnelling are classical solutions in imaginary time. 
We remark here only that: (i) solutions of the imaginary time equations may be 
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expected in the classically forbidden region because the replacement t -f -ir implies 
(d#/dt)’+ -(ds/dr)’ and real solutions of the energy equation 

-i(*)’+ V(#,)= E 
2 d r  

do exist for E < V ( # ) ;  and (ii) such a solution is an extremum of S ( d )  about which 
quantum fluctuations can be studied as above. Thus to study tunnelling one works in 
the Euclidean (imaginary time) field theory, as in statistical mechanics. The solutions of 
the Euclidean field equations are called instantons. 

The aim of this paper is to show that dimensional regularisation (’t Hooft and 
Veltman 1972, ’t Hooft 1973) provides a very powerful tool for controlling the zeros 
and ultraviolet divergences which arise in instanton calculations. The major part of the 
paper is concerned with the simplest such calculation in four space-time dimensions: we 
calculate in the one-loop approximation the imaginary part of the Euclidean Green 
functions of a massless boson field # with self-interaction 4g#4 (g < 0). This imaginary 
part, which is of course exponentially small in g, is associated with the tunnelling out of 
the metastable ground state # = 0. 

Much of the technical content of this paper is contained in Lipatov (1976a, b, 1977a, 
b) and Brtzin eta1 (1977), where information on late terms in the ordinary perturbation 
in g is obtained essentially by a dispersion relation in the variable g. (We refer the 
reader also to the earlier papers by Langer (1967), Lam (1968), Bender and Wu (1969, 
1971, 1973), Banks er a1 (1973), and to Brtzin (1977) for a review of this problem.) 
This dispersion relation requires assumptions on the absence of singularities in the 
complex g plane other than the cut along the negative g axis (whose discontinuity is 
given by the instanton calculation). These assumptions are almost certainly false in four 
dimensions because of the existence of renormalon singularities (’t Hooft 1977, 
Lautrup 1977, Parisi 1978). Nevertheless we use the dispersion relation to obtain the 
late terms for the renormalisation group 0 function in four dimensions. Our results 
agree with those of Lipatov (1977a, b) and BrCzin et a1 (1977). 

The main features and advantages of the dimensional regularisation scheme are the 
following: 

The instanton solution 4, of four dimensions is not a solution of the classical 
field equations in d dimensions. Correspondingly when the field # is expanded 
about the configuration #, in the regularised theory, there is a term in the action 
linear in the field c$. However we show that this term can be handled by 
ordinary perturbation theory. Thus even in d dimensions one expands the field 
# about the known solution of four dimensions. 
With this choice of dC, the determinant of the differential operator M in 
equation (1) can be calculated exactly in d dimensions by a conformal trans- 
formation on to the sphere in (d + 1) dimensions (Adler 1972, 1973, Drum- 
mond 1975, Fubini 1976, ’t Hooft 1976, Jackiw and Rebbi 1976, Lipatov 
1977b, Brtzin et a1 1977). Thus for M there exists an O(d + 1) formalism even 
though there is no conformal invariance of the original action in d dimensions. 
For every continuous symmetry of the action which is broken by a classical 
solution #,, there is an eigenfunction of M with zero eigenvalue. For such 
modes the Gaussian approximation in equation (1) is inadequate and the 
Gaussian integrals must be replaced by exact integrations; this is done using the 
method of collective coordinates (Zittartz and Langer 1966, Langer 1967, 
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Gervais and Sakita 1975). In dimensional regularisation all eigenvalues which 
would be zero in four dimensions become of order ( 4 - 4  in d dimensions. 
However all the collective coordinates of four dimensions must be retained in d 
dimensions in order that the term linear in 4 (see remark ( a ) )  can indeed be 
treated perturbatively. Further, with ‘zero modes’ which are in fact of order 
( 4 - d ) ,  one obtains an explicit demonstration that if the ‘zero modes’ are 
removed from the differential operator on the sphere, then the Jacobian factor 
in the transformation to collective coordinates is the norm of the corresponding 
eigenfunction on the sphere. 
In d dimensions the product of eigenvalues (in det M )  is given in terms of the 
Reimann I function and the simple poles in (4 - d )  characteristic of dimen- 
sional regularisation appear directly from the known singularity of that 
function. Renormalisation can be made directly by minimal subtraction. 

The outline of the paper is as follows. In 9: 2 we consider the classical solution in four 
dimensions and justify using it in d dimensions. In B 3 we calculate the small oscillations 
determinant in d dimensions and isolate the pole term and finite part (d + 4). In 9: 4 we 
introduce the collective coordinates for the zero modes; the expression for the 
imaginary part in terms of the  bare coupling is given in equation (37). Renormalisation 
is performed in 9: 5 and the result in terms of the renormalised (minimally subtracted) 
running coupling constant is given in equation (42). The late terms of the p function are 
obtained in 5 6 and compared with Lipatov (1977a, b) and BrCzin et a1 (1977). Two 
appendices generalise the results to include O ( n )  internal symmetry and conformal 
invariant g$JZN theories (g < 0). 

2. Classical solution and the perturbation about it 

We start from the Euclidean Green functions 

where 

measures the Euclidean action. The field equations are 

v24 = g4I3 (4 1 
for which, for g < 0, and in four dimensions there are Emden solutions (Emden 1907) 

4 = * 4 C  

where 

A 8 1’2 

4c = (<) 1 + A  ’(x - X I J ) ~ ‘  

The parameters xo and A characterise the position and scale size of the instanton 4c, and 
are associated with the translation and dilatation invariance of H. 
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When the fields in (2) are expanded about 4c we obtain exponentially small 
imaginary parts in both numerator and denominator. In order to isolate the imaginary 
part of the numerator, we define 

where HO is a free Hamiltonian (g = 0 ) ;  the numerator is to be expanded about 
the denominator about 4 = 0. 

is defined by the following results. 

= 4c, 

The theory is regularised by working in d dimensions. The continuation to general d 

( a )  Integrals over all space can be translated and scaled as usual and 
W 00 I-, ddx f(r)  = Sd  lo dr rd-'f(r), r = 1x1 

where Sd = 2 7 r d l 2 / r ( d / 2 )  is the surface of the unit  sphere in d dimensions. 
( b )  

d2 d - 1  d L2 v =-+---- 
dr r dr r2  (9 )  

where 

( c )  Symmetric traceless tensors f ( ' ) =  u , , , ~  l ~ , lx , z  . . . x,,  (uI lL3 ,, = 0) are spherical 
harmonic eigenfunctions of L2 with eigenvalue I(/+ d - 2) :  

L2 f "=  I(I + d - 2)f", (10) 

and have degeneracy 

With this definition of V2 in d dimensions we can now proceed to the Gaussian 
approximation of expression (7). Writing 4 = 4c + 6, we have 

A 
- (-8g)"' ddx 2d3+f(  d d x d 4  

+ A  ' ( x  - xO) 

H(4,) must be evaluated correct to first order in E = 4 - d  because after one-loop 
renormalisation l /g  + ( l / g R ) + O ( F 1 )  (see 0 5). We obtain 

The quadratic form M is 

M = -V2- 24A 
[ 1 + A  * ( x  - X O ) ~ ] ~  ' 



Instanton calculations 2289 

The  linear term (in 6) in equation (12) exists because 4c is not a solution of the field 
equations in d dimensions (d # 4). Normally if one  has a term linear in the field in the 
Hamiltonian, the functional integral must be brought into a proper Gaussian form by 
translating the field to eliminate the linear term. This is equivalent in this case to solving 
the non-linear equation (4) exactly. However in our particular case, the linear term in 
(12) can be handled by straightforward perturbation theory. 

insertions. 
Since the coefficient of d in equation (12) is of order E/(-g)”’, inspection shows that a 
tree diagram with L d insertions is of order E L/g, where L is always greater than one. 
The  contributions of all tree diagrams give the exponential of the connected diagrams, 
and hence these contributions or  order EL/g are to be added to H(4 , )  in expression 
(13). However as remarked there, terms of order E’/g are negligible for our  calculation 
even after renormalisation. Hence all these tree diagrams contribute only to a 
higher-order calculation. Implicit in these remarks is the assumption that the pro- 
pagators, which are the inverse of M in equation (14), contain no  eigenvalues of order 
1 / ~ .  Therefore the small oscillations field 4 must contain no  modes of M with 
eigenvalues of order E, i.e. the zero modes of four dimensions must still be handled in d 
dimensions by collective coordinates, and excluded from the small oscillations d. 

Next consider one-loop diagrams, where a factor of 1 / ~  can appear from the 
ultraviolet divergences. The only possible candidate is shown in figure 1. The  1 / ~  
divergence of the loop gives a contribution of order 1. The  calculation of this diagram is 
given in appendix 1, and should be comprehensible after 88 3 and 4. The  value of the 
graph is - $  and hence it contributes a factor 

To establish this claim, consider first connected tree diagrams with 

(15) 
-9 /2  c l = e  

to the coefficient of the imaginary part of Z‘’M’ (equation ( 7 ) ) .  

Figure 1. The only graph involving the linear term in the Hamiltonian (12) which 
contributes at this order. 

3. Determinant of small oscillations 

In this section we calculate the ratiodet M/det MO, as required in expression (1). Here M 
is as in equation (14) and MO is the operator -V2, from the denominator of expression 
(7). A direct calculation involves finding the bound state spectrum and phase shifts of 
M. In fact the only information on the spectrum of M is contained in the zero modes 
arising from the spontaneous symmetry breaking by 4c. Specifically, in four dimensions 

a4c 8 1 - A ’ ( x  - x 0 l 2  _-  
ah -(<I [ l + h 2 ( ~ - ~ ~ ) 2 ] 2  

and 

2A ’ ( x  -xo) , ,  8 1 / 2  
-- d 4 C  
ax 0” --(<I [ l + A 2 ( ~ - ~ ~ ) 2 ] 2  
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are eigenfunctions of it4 with zero eigenvalue. The eigenfunction (166) corresponds to 
I = 1 and is fourfold degenerate. The fact that the I = 0 eigenfunction (16a) has a node 
at (x - xo)’ = 1/A2 indicates that there is a lower energy I = 0 eigenfunction, i.e. a bound 
state. 

The role of a single bound state is best appreciated by considering a model integral 

For Re g > 0, Z(g )  is defined by a contour integral along the real 4 axis. Z(g)  is defined 
for other values of arg g by standard analytic continuation by rotation on the contour of 
4 integration. The cases arg g = f 7 r  are defined by contours which have for large 141, 
arg 4 = T 7r/4. The steepest descent evaluation of these contour integrals for negative 
g gives imaginary parts dominated by the ‘instanton’ saddle points q5c = *(-g)-”’, as 
shown in figure 2 .  The negative ‘eigenvalue’ associated with the ‘instanton’ merely 
implies that the corresponding integration contour of steepest descent goes into the 
complex plane. For future reference note that each saddle point gives only half a 
Gaussian integration and that if the analytic continuation in g of the functional integral 
follows that of the toy, then 

sgn[Im Z‘2M’(arg g = *7r)] = TI. (18) 

(We are grateful to M Stone for discussions on this point.) 

Figure 2. The steepest descent contour for the function Z ( g ;  arg g = P) in equation (17); 
the dominant part comes from the saddle point at C$ = 0; the imaginary part is dominated by 
the instanton saddle points C$ = *l/(-g)’’’. 

In addition to these zero modes and bound state in four dimensions, one knows that 
the determinant represents the one-loop diagrams in the presence of an instanton, and 
will have the conventional ultraviolet divergences from the product of eigenvalues of 
high angular momentum. It is to control this divergence that we work in d dimensions. 
Of course is then not a solution of the field equations. In fact it is the exact solution of 
a field equation in d dimensions with an external source term 

2A g 1/2 

‘(q) [1+A2(x-x0)’]’ 

which breaks all symmetries by order E. Hence in d dimensions all the ‘zero modes’ 
have eigenvalues of order E .  

In order to calculate det M/det MO we must know eigenvalues (and phase shifts in 
the continuum) of the differential operator M. However its general eigenfunctions are 
not known. This problem is avoided by exploiting the dynamical O(d + 1) invariance of 
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the quadratic form. After translating x by x o  and rescaling by A ,  we define fields @ on 
the unit hypersphere in (a'+ 1) dimensions: 

@ = K  1-(d/2)d (19 )  

where 

K = 2 / ( 1  +X2). 

The volume element ddx is replaced by dfl K - ~  where d o  is the surface element of the 
unit sphere in (d + 1) dimensions. The differential operator V2 is replaced by 

v, = -L2 - i d @  - 2 )  ( 2 1 )  

where L2 is the total angular momentum operator in (d + 1) dimensions (cf equations 
(9), (10)  and (1 1)). The Hamiltonian ( 1 2 )  now has the form 

H = H(4, )+$ I dR & ( - V o - 6 ) & - ~ ( 2 / - g ) l / ~  dfl  K - ' + ' ~ ' ~ ) &  I 
- ( -2g)1 '2  [ dR +ig j dR K-f&4.  

The quadratic form in this expression is invariant under O(2 + 1) rotations; its 
eigenfunctions are the spherical harmonics. Using equations (9). ( lo) ,  (1 1 )  and ( 2 1 )  we 
obtain for the determinant of small oscillations 

( 2 3 )  

In the numerator on the right-hand side we note the bound state L=O and the 
(d + 1 )  'zero modes' ( L  = 1) with eigenvalue 

E = - $ E ( ~ + O ( E ) ) .  (24) 
Extracting this factor from the product, the right-hand side of (23 )  becomes 

( 2 5 )  
The (-1)'I2 from the bound state has been omitted since it generates only the imaginary 
part of Z'2M' (cf equation (18) ) .  

Since T(L + 3 - E ) ( ~ L  + 3 - E)/r(L + 1 )  - L3-' for L large, the sum diverges as E -0. 
To pick out the simple pole and finite part as d - 4 we shift the summation variable 
independently for each of the four logarithmic factors so that the sums may be written in 
the form 

where p is an integer. Using the asymptotic expansion 

we find that the sums reduce to ZF=2 L'-e in L or ZF=2 L-'-' In L. These are respec- 
tively --i '(-l + E )  and -('(l + E ) ,  where ('(s) is the derivative of the Riemann 5 
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function. The only properties required of the [ function are that it has a simple pole at 
s = 1 with residue 1, and obeys (ErdClyi 1955) 

l ( s )  = 2’irS-’ s in ( im) r ( l -  s) l (1-  s). 

A tedious but straightforward calculation yields 

where y = 0.577 215 665 . . . is Euler’s constant and l ‘ ( 2 )  = -0,937 548 254 . . . . The 
simple pole in E is directly related to the ultraviolet divergence of one-loop diagrams 
and is removed by a conventional coupling constant renormalisation as discussed in $ 5. 

4. Introduction of collective coordinates 

In this section we discuss the use of collective coordinates (Zittartz and Langer 1966, 
Langer 1967, Gervais and Sakita 1975) to deal with the (d + 1) zero modes of the 
operator M. 

The existence of these zero modes in four dimensions means that the inverse of the 
quadratic form does not exist and so we cannot define a propagator. 

Even in d dimensions the ‘zero modes’ must be excluded from the field according to 
the arguments of 9 2. This problem is resolved by excluding the zero mode eigen- 
functions from C$ and spanning the space of these eigenfunctions by allowing A and x o  to 
vary, and integrating on them. Thus we write 

4(x)=4dx;A7xo)+C ~ 4 n ( x ; A , x o )  (28) 
n 

regarding {A, xo, a,,} as new variables replacing 4 ( x )  and choosing{d,,} to be normalised 
eigenfunctions of M corresponding to the non-zero modes. (& is the function in 
equation (6); 4, depends on A and xo  because M does.) Thus the functional measure 
D 4  is replaced by J d x o  dA II, da, where J M  is the Jacobian of the transformation. 
(The superscript M refers to its association with the differential operator M.) 

M d  

Performing the Gaussian integral leads to a factor 

( 2 ~ ) ( ~ + ’ ) ’ ~  F T 2  det MO 

where the tilde indicates that the zero modes have been extracted and the factor 
( 2 ~ ) - ‘ ~ ’ ’ ) ’ ~  comes from the fact that there are (d + 1) more Gaussian integrals in the 
denominator than in the numerator. 

Apart from the integrals on A and xo, it remains only to calculate the Jacobian. This 
is given by 

where 4A =dqbC/aA and #J& a4,/dx,” (equation (16)) are just, in four dimensions, the 
eigenfunctions of M with zero eigenvalue. 

Note, however, that the norm of the dilatation eigenfunction is logarithmically 
divergent in four dimensions. This indicates the presence of other factors which will 
cancel off this spurious infrared divergence. These factors come from the small 
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oscillations determinant. Tc see this recall that in $ 3  we calculated c 2 =  
(det v/det VO)-’l2 (equation (27)) not (det A?/det Mo)-1/2. In fact 

where E?, E r  and E r ,  E l  are the regularised eigenvalues of M and V respectively 
corresponding to the dilatation and translation eigenfunctions. Thus we have an extra 
factor (E?/EhV)1’2(Er/El)d/2 to take into account. E: and E r  are given by equation 
(24) whereas E? and E r  can be calculated to lowest order in E in straightforward 
perturbation theory: 

and 

We see that the norms in the Jacobian (29) are cancelled by the denominators in (31) 
and (32) and we are left with a finite result as E + 0. 

A more instructive way of proceeding is to notice that since V @  = K-’-(~’~)MC#I 
where 0 = K 1-(d’2)4, then V 0  = E v@ implies MC#J = 4A ’ E  ”[ 1 + A  ’(x - x0)’]-’4. Thus 

and 

to lowest order in E .  

Combining equations (28)-(34), we have 

where J v  is the Jacobian factor with the ‘compact norm’ 

J v = [ I  d d X 4 ’ ( X ) 4 A 2 [ 1 + A 2 ( X - X o ) 2 ] - 2 4 * ( ( X )  

Collecting all the factors from equations (13), (15), (18), (27), (35) and (36), we have 
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Taking the Fourier transform, extracting ( 2 ~ ) ~ 6 ( &  s i ) ,  and amputating the external leg 
factors gives for the vertex function 

In this expression, q? is obtained from the Fourier transform of 4c after a factor 
( - A ' 8 ~ ~ / 3 g ) ' / ~  has been removed: 

31/2 
q?(q) - 

77 
K w z ) - I ( \ ~  1) 1 ddX e i q . x ( l  +x2)-1 = 2 d / 2 7 7 n ( ( d - 2 ) / 2 3 1 / 2 / q / I - ( d / 2 )  

(38) 

where K is a modified Bessel function. The coefficient c b  is given by 

Equations (37) to (39) contain the final result for the bare theory. 
Note that although there are two saddle points 4 = *dC, each contributes only half a 

Gaussian integral according to the discussion in 9: 2; thus the bound state mode 
effectively contributes a full Gaussian integral. Also, after removal of the external legs, 
the imaginary part at this order is indeed one-particle irreducible as there are no poles in 
any momentum variable. Finally note that the imaginary part from the denominator in 
equation (2) (cf. equation (7)) is of higher order in g and can be neglected. 

5. Renormalisation 

In the massless theory which we are considering, the divergences in perturbation theory 
are removed by a coupling constant and wavefunction renormalisation. We have 

r g M )  = z M r ( 2 M )  

where Z = 1 +O(g2) .  For minimal subtraction ( ' t  Hooft 1973) 

where g R ( p O )  is the renormalised coupling at the momentum scale p O .  
For the one-loop result in expression (37), we require only one-loop coupling 

constant renormalisation; the wavefunction renormalisation 2 contributes to Im r only 
at the three-loop level. In the expression (37), we see that the combination A'/g 
naturally appears in the exponential. Thus the effective coupling for instantons of scale 
size l / A  is the renormalised coupling at momentum scale A .  Writing 



Instanton calculations 2295 

we obtain the renormalised imaginary part 

where 
CR=cbexp j - -+ - ( ln  3 3  n + y + 2 ) + 0 ( r ) )  

E 2  

From equation (41), the A dependence of gR(A) may be extracted by rewriting it  in 
terms of a renormalised coupling at a fixed momentum scale p o :  

Thus from the asymptotic freedom of the theory (in particular for d = 4 since g < 0), we 
see that the integral in (42) converges for large A ,  for any M 2 1. For small A 
convergence is guaranteed by the exponential decrease of 4 (see equation (38)). 
Equations (42) to (44) contain the final result for the renormalised imaginary part. 

6. High-order estimates 

The existence of an imaginary part of vertex functions for g < 0 implies that they have a 
cut in the g plane which can be placed along the negative g axis. The fact that this 
singularity extends up to the origin implies that the perturbation expansion in g has zero 
radius of convergence. In the absence of stronger singularities (from other sources) at 
the origin in the g plane, one can obtain the leading behaviour of the late terms in the 
perturbation expansion by means of a dispersion relation in g, with the contour shown in 
figure 3: 

Figure 3. Contour integral involved in the dispersion relation (45). 
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(We have assumed no subtractions are required, and have discarded the contour at 
infinity; the estimates for late terms are unaffected if any fiinire number of subtractions 
is required.) 

In general in four dimensions, however, other singularities do exist. They are the 
singularities due the the Landau ghost (the so called renormalon effects: Landau 1955, 
't Hooft 1977, Lautrup 1977, Parisi 1978). I t  is believed that these singularities are 
present in the vertex functions and in the renormalisation group p function unless the 
latter is expressed in terms of the minimally subtracted coupling constant. They are 
believed to be absent for d < 4, in particular for E expansions. Since we have calculated 
the imaginary part using dimensional regularisation, we are in an ideal position to 
obtain high-order estimates for quantities which are believed to be free of renormalon 
singularities. These results will be published elsewhere. In this paper we restrict 
ourselves to repeating the high-order estimates for the p function in four dimensions for 
a renormalised coupling constant defined at a symmetry point CL (Lipatov 1977a, b, 
BrCzin er a1 1977). 

To be specific, we write a dispersion relation in the one-loop renormalised (mini- 
mally subtracted) coupling gR(k.0). The full renormalised coupling gR(p) defined at the 
symmetry point p is given by 

(46) 1 (4) 
~ R ( P  )CL' = - $R (qi)Iq,.q, =:g2(4s,, - 1 ) .  

(The factor --: is from our normalisation conventions.) The p function is given by 
p dgR(k))Idp at fixed bare theory, or equivalently at fixed F~ and g R ( P o ) .  Thus using 
equations (42), (45) and (46) the coefficient of (gR(Po) )K  in this p function is given by 

where we have taken the limit d + 4  since it is finite, and g means the one-loop 
renormalised gR(po). The integral on g gives trivially a r function; the correction of 
order g in Im r gives contributions down by O ( K - ' )  and are negligible. The replace- 
ment x = P I A  in the A integral and integration by parts gives 

-3 m 

T(K+$) jc r )  I d ~ x ' ~ ( G ( x ) ) ~ ( l  +O(K- ' ) ) .  (48) 
Po 0 

Recall that this is the coefficient of (gR(&)))K in the p function. In order to obtain the p 
function in terms of the full renormalised coupling g R ( p ) ) ,  we must make the substitu- 
tion 

(Since p starts at O(g2)  in four dimensions, the higher-order terms in this expression are 
irrelevant .) 

gR(P 0 )  = gR(p + ( f ? R ( P  ))2 + 1. (49) 

Simple algebra then gives the coefficient of in p to be 

BK(1 +O(K- ' ) ) .  (50)  
- a n z a / 3  

P K  = e  

The coefficient a comes from straightforward perturbation theory. Evaluating the 
usual one-loop diagram at the symmetry point 

(5  1) 

gives, using the definition (46), 

~ ~ g ~ ( p )  = g -9(8.rr2~)- 'g2~- ' [1  +E(+ In 7~ ++ In 3 -:y + 1)+O(e2)] +O(g') 
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where here g means the bare coupling constant. Eliminating g between equations (41) 
and (51) gives in four dimensions 

(Y = 9(8i7’)-’[$ In i7 + t  In 3 - $-y + 1 - In(p/po)]. (52) 

If we substitute this value of a into equation (50),  and use the explicit forms (38) for 4 
and (43) for CR in the expression (48) for PK, we obtain the required result 

5 

- 4 y‘) dx x6(K1 ( x ) ) ~  ( - &) T(K + ?)[ 1+ 0(K1)]. 
0 

Up to the convention of the normalisation of coupling constant (g/4! or g/4) this 
result is identical to that obtained by Lipatov (1977a, b) and BrCzin et a1 (1977). To 
verify this one can evaluate the sum 

a2 

x = e x p ( - &  1 = 2  ( I+ l ) ( l+2)(21+3)[1n/ l -  (1 + 1)(1+ 2) 

lS  I) 6 + 
( I  + 1)(1+ 2)+ ( I  + 1)2(I + 2)2 

(from, e.g., the results section (b)(ii) of BrCzin et a1 for n = 1). This can be done 
following the method of ’t Hooft (1976) by placing an integer cut-off A on the sum on 1 
and evaluating each of the three terms in the sum independently for large A.  For the 
first term the trick is to change the summation variable independently for each of the 
four logarithmic factors so that each is of the form C P(1) In 1 where P(1) is a polynomial. 
Apart from ‘end terms’ from changing the summation variable one ends up with 

The A dependence cancels as i t  must and the final result is 

1 = 2-5/23-5/255/2,,.-1/2 exp(3i7-25‘(2)+LZ-Sr). 

Substituting this expression into the result of BrCzin eta1 reproduces equation (53) up to 
a factor 6 for the different choice of coupling normalisations. 

7. Conclusions 

In this paper we have calculated the imaginary part (of vertex functions) associated with 
tunnelling in field theories with negative coupling, in the semiclassical (small g) 
approximation. The new feature of this paper is the use of dimensional regularisation to 
control the ultraviolet divergences of four dimensions. A major aspect is that even in 
the regularised theory (d f 4) it is adequate to use the instanton solution of four 
dimensions. Because this field configuration is not a solution in d(  f 4)dimensions, one 
may obtain additional insight into the Jacobian factor when collective coordinates are 
introduced. The integration over instanton positions xo” restores translation invariance. 
Another advantage is the direct appearance of the dimensionally regularised, renor- 
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malised, running coupling constant; instantons of scale size l / h  have an effective 
coupling gR(h) .  The asymptotic freedom of the theory in d = 4 for g < 0 implies the 
convergence over instanton scale sizes for A + CO, and for fixed external momenta there 
is exponential convergence for A + 0. 

Via a dispersion relation in g we have obtained the late terms in the /3 function, in 
four dimensions, for the renormalised coupling defined at a symmetry point ,U. The 
result, generalised to O ( n )  internal symmetry in appendix 2 ,  agrees analytically with the 
calculation of Lipatov (1977a, b) and BrCzin et al (1977), although there is minor 
numerical disagreement with the results quoted in BrCzin et a1 for n # 1. 

The generalisation to conformal invariant g42N theories is given in appendix 3 .  
A final, perhaps unimportant feature, which we relegated for technical reasons to 

appendix 1, is the evaluation of the contribution of the extra diagram, figure 1. The 
calculation can be completely controlled by working on the sphere with the Hamil- 
tonian ( 2 2 ) .  It is this result which ensures agreement with the calculations of Lipatov 
and Brtzin et al. We feel the graph should also be directly calculable in flat space using 
the Hamiltonian (12); we have not been able to elucidate the discrepancy discussed in 
appendix 1. 
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Appendix 1 

Here we evaluate the contribution from the linear term in the Hamiltonian ( 1 2 ) .  As 
discussed in 3 2 there is only one graph giving a contribution at this order; it is shown in 
figure 1. Since lines in this diagram represent the propagator in the presence of an 
instanton, it is much simpler to use the Hamiltonian on the sphere, expression ( 2 2 ) ,  
where the propagator can be written explicitly in terms of the spherical harmonics 
Yz  ( T )  in (d  + 1)dimensions; the label L is the principal quantum number and 17 are the 
usual coordinates on the (unit) sphere (in d + 1 dimensions) 

?-/@ =2xc”/(1 + x 2 )  2 q d C 1  = (1 -x2)/(1 + x  )=  K - 1 so that v 2  = 1. 

Since the ‘zero modes’ are excluded from the propagator by the introduction of 
collective coordinates ($4),  the propagator in coordinate space is given by 

where the tilde means L = 1 is excluded and the eigenvalue in the denominator is read 
off from the L 2  eigenvalue in equation (10). From the Hamiltonian ( 2 2 )  the explicit 
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expression for the graph is 

= 6~ d o 1  d n 2 ( l  +COS Ol) -1+(e '2 ) ( l  +cos 

(A.2) 
y: (771)Y: (Td*  (v2)Y:: (m)* - 

x c  
L,L',a.a'  ( L  + fd + 2)(L +id - 3)(L' +id + 2)(L' + id - 3) 

(el and O 2  are the two principal polar angles of q 1  and v2). Since this expression has an E 

factor from the &vertex, we require only the 1 / ~  pole from the  ultraviolet divergence of 
the sum on L'. After some simplification using the result 

( 2 ~ '  + d - i)r(;(d - i))r(d - 1 + L' )  
y:'(v2)y:'* (?)72)= 4n(d+1)/Zr(L,+ l)r(d - 1) 9 

a' 

expression (A.2) reduces to 

- 3 ~ ( 2 ~ ' +  d - i)r((;(d - i))r(d - 1 + L ' )  c 
L,L',u 2 4 d  + 1 ) / 2 r ( ~ ' +  i)r(d - 1 )  

(Note that only the bound state L = 0 contributes.) Approximating the sum for large L',  
following the method of B 3, we obtain 

- ( 2 ~ ' + d - i ) r ( d - i + ~ ' )  12 c = -+ O(1). 
Lf r(L' + 1 ) ( ~ '  + id + 2 ) ( r  + i d  - 3) E 

Hence the graph has value - ?  as stated in equation (15). 
In 9 4 on the introduction of collective coordinates we discussed how the combina- 

tion of Jacobian and determinant factors is independent of the method of performing 
the calculation, i.e. independent of whether we work in flat space or on the sphere. 
Therefore we expect that the same value for this graph should be obtainable directly 
from the Hamiltonian (12) in flat space rather than (22) on the sphere. The expression 
corresponding to (A.2) is (to simplify we translate by xo and rescale by A) :  

486 J ddx ddy( 1 + x~) -~A?- ' (x ,  y)(l + y2)-'A?-'(y, y). (-4.3) 

We assume again we require only the 1 / ~  pole from the divergent loop integral. It is 
useful in this context to view M i ;  as just the sum of free propagators with zero, one, 
two . . . insertions of - 3 g 4 z ( x )  = 24(1 + x 2 ) - ' .  The only ultraviolet contribution in 
dimensional regularisation is from the single insertion. Explicit evaluation of the 
singular term yields for expression (A.3) 
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This integral can be evaluated using the identity 

1 4(d - 6) 
Myz- 2 2-- - ( I + ~  (1+y2)3  

and the explicit form (16) for the dilatation and translation eigenfunctions. The result 
of these calculations is 

1 
+ O ( E ) ) =  - ~ + O ( E ) .  

144 1 

We have not been able to elucidate the discrepancy between these two calculations. The 
former result - 4  is to be believed since the calculation is completely controlled; 
presumably some assumption in the second calculation is false, e.g. the zero modes may 
not have been correctly excluded. 

Appendix 2 

Here we summarise the generalisation of the calculations in $9: 2 to 6 to the case of 
interactions with O ( n )  internal symmetry. 

The instanton solution of four dimensions is now 

41 = U i d c  i = 1 , 2 , .  . . , n ('4.4) 

where ui is a unit vector and 4c is as in equation (6). Since the Hamiltonian is O ( n )  
invariant, the expression (13) for H(&) is unchanged. The differential operator Mji has 
the form 

8A 1 6uiu,A 
[1+A2(x-xo) ] 2j " 1  - [ 1 + A '(x - X O ) ~ ] ~  ' 

This operator can be decomposed into longitudinal and transverse components 

= MLUlu, +MT(Sjj + U j u , ) .  (A.6) 

Translating by xo and scaling by A we have 

The determinant of ML is as before (cf equation (23)). The determinant of the 
( n  - 1)-fold degenerate modes in MT is obtained by the same procedure as in 3 3. The 
equation analogous to (23) is 

. (A.9) 

In the numerator on the right-hand side we see the L = 0 zero mode with eigenvalue 

E = - ;e (1 + O(€)) (A.lO) 

corresponding to the spontaneous breaking of the O ( n )  symmetry. Extracting this 
factor from the product (A.9), and following the same procedure as in equations (25) to 
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(27), yields an additional factor 

The (n - 1)-fold zero modes (A.lO) are replaced by collective coordinate integra- 
tions over the unit vectors {U[}, Following the arguments in $ 4 ,  the appropriate 
Jacobian factor is 

(A.12) 

The final correction factor for the bare theory is the evaluation of figure 1.  
Following appendix 1, one obtains the value -(n +8)/2.  Thus for n # 1 this graph 
contributes a factor 

(A.13) 

in addition to the factor c 1  = exp(-z) in equation (15). 
Combining expressions ( A . l l )  to (A.13) and remembering the factors ( 2 ~ ) - ( ~ - ' ) ' ~  

for the Gaussians replaced by collective coordinates, one obtains the additional factor 

c y )  = exp[-(n - 1)/2] 

1 x i  1 du u i l u i 2 .  . . uiZM (A.14) 

for n # 1, for the imaginary part of the 2M-point vertex function. Note that we have put 
in a factor of 3 since, according to the discussion of the integral (17), there is half a 
Gaussian integral for the bound state at each saddle point. Expression (A.14) can be 
simplified using the result 

7 r n / 2  

. (A.15) ( S i l i z S i a i 4  . . . SIZM-- l IZM +perms) 
n(n + 2 ) .  . . (n + 2 M - 2 )  

4 1 du ui,uiz . . . U,,, = - 
T ( n / 2 )  

It is seen explicitly that (A.14) is 1 for n = 1. 

constant renormalisation; for n # 1, equation (41) becomes 
Expression (A.14) contains a divergent term which is again removed by coupling 

A '  1 n+8  _ -  
2 ,  

g gR(A) 877 E 

Making the substitution for g yields 

(A. 16) 
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where 

r(M + In ) 

x exp[(n - 1 ) ( I T - ~ J ' ( ~ )  - $7 + 3 1 .  (A.18) 

This generalises the results (42) and (43) for n # 1. 

generalising (48) is 
The calculations to obtain late terms in the p function follow ti 6. The expression 

(A.19) 

where CR is given in (A.18). The multiplicity of the one-loop graph again modifies the 
coefficient a in expression (52): 

(A.20) 
n + 8  
8IT 

a=-  ($ In T + 4 In 3 - t y  + 1 - I ~ ( , . L / P ~ ) ] .  

The final result for pK becomes 

(A.21) 

Using the expression (cf % 6) 

= - 1 2 ~ ~ ~ J ' ( 2 ) + 6 y - - 2 4 1 n 2 + 2 4 1 n 3 + 2 1 n 2 ~ - ~  

one may verify that the expression (A.21) agrees with the result of BrCzin er a1 (1977). 
We find however that there is an error in the numerical values they quote, as has also 
been noted by Dittes et a1 (1977) who compare explicit four-loop calculations with the 
estimate (A.21). 

Appendix 3 

Here we make some remarks on conformal invariant g42N theories (N>2) .  These 
interactions have a dimensionless coupling constant in d, = 2N/(N - 1) dimensions, and 
are conformal invariant in that dimension if there is no mass term or other interaction. 
In this case there exist analytic instanton solutions which again enable high-order 
estimates to be made (Lipatov 1977a, b, BrCzin er a1 1977). 
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These calculations are particularly simple in dimensional regularisation because for 
N > 2 no renormalisation is required at the one-loop level; to be precise, graphs of the 
form figure 4 vanish in the dimensional regularisation scheme when the propagator is 

Figure 4. Graph contributing to r(ZN-2' which vanishes in the massless theory in dimen- 
sional regularisation. 

massless. Thus the imaginary part calculated as in 9pS 2 to 4 should also be finite for 
these theories. This is obvious for the case N > 3; because the conformal dimension d, 
is not an integer, there are no divergences in the limit d + d,. The asymptotic behaviour 
( L  + 00) of the degeneracy (1 1) 

ensures that for non-integer d one never meets the pole of the Riemann l function. For 
the case N = 3, one may verify explicitly that in the sum 

(where E v (L)  (E  ""(L)) are the eigenvalues in the presence (absence) of an instanton), 
there is no term of the form C L  l/L'+' for L large; its coefficient vanishes. 

We leave the reader to construct the result from the expressions in Lipatov (1977a, 
b) and BrCzin et a1 (1977). 
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